Chromosome triplication found across the tribe Brassiceae.

نویسندگان

  • Martin A Lysak
  • Marcus A Koch
  • Ales Pecinka
  • Ingo Schubert
چکیده

We have used an approximately 8.7-Mb BAC contig of Arabidopsis thaliana Chromosome 4 to trace homeologous chromosome regions in 21 species of the family Brassicaceae. Homeologs of this segment could be identified in all tested species. Painting of pachytene chromosomes of Calepina, Conringia, and Sisymbrium species (2n = 14, 16), traditionally placed in tribe Brassiceae, showed one homeologous copy of the Arabidopsis contig, while the remaining taxa of the tribe (2n = 14-30) revealed three, and three Brassica species (2n = 34, 36, and 38) and Erucastrum gallicum (2n = 30) had six copies corresponding to the 8.7-Mb segment. The multiple homeologous copies corresponded structurally to the Arabidopsis segment or were rearranged by inversions and translocations within the diploidized genomes. These chromosome rearrangements accompanied by chromosome fusions/fissions led to the present-day chromosome number variation within the Brassiceae. Phylogenetic relationships based on the chloroplast 5'-trnL (UAA)-trnF(GAA) region and estimated divergence times based on sequence data of the chalcone synthase gene are congruent with comparative painting data and place Calepina, Conringia, and Sisymbrium outside the clade of Brassiceae species with triplicated genomes. Most likely, species containing three or six copy pairs descended from a common hexaploid ancestor with basic genomes similar to that of Arabidopsis. The presumed hexaploidization event occurred after the Arabidopsis-Brassiceae split, between 7.9 and 14.6 Mya.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.

The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three ...

متن کامل

Two Plastid DNA Lineages—Rapa/Oleracea and Nigra—within the Tribe Brassiceae Can Be Best Explained by Reciprocal Crosses at Hexaploidy: Evidence from Divergence Times of the Plastid Genomes and R-Block Genes of the A and B Genomes of Brassica juncea

Brassica species (tribe Brassiceae) belonging to U's triangle--B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC) and B. carinata (BBCC)--originated via two polyploidization rounds: a U event producing the three allopolyploids, and a more ancient b genome-triplication event giving rise to the A-, B-, and C-genome diploid species. Molecular mapping studies, in situ ...

متن کامل

Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae).

PREMISE OF STUDY Many angiosperms have fruit morphologies that result in seeds from the same plant having different dispersal capabilities. A prime example is found in the Brassiceae (Brassicaceae), which has many members with segmented or heteroarthrocarpic fruits. Since only 40% of the genera are heteroarthrocarpic, this tribe provides an opportunity to study the evolution of an ecologically ...

متن کامل

Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae).

Karyotype evolution in species with identical chromosome number but belonging to distinct phylogenetic clades is a long-standing question of plant biology, intractable by conventional cytogenetic techniques. Here, we apply comparative chromosome painting (CCP) to reconstruct karyotype evolution in eight species with x=7 (2n=14, 28) chromosomes from six Brassicaceae tribes. CCP data allowed us t...

متن کامل

Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progeni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2005